Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Gas and Vapor

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

UN-DOT
Classification of hazardous materials subject to shipping and storage regulations
Hydrogen
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

Adiabatic Calorimetry
Data demonstrate the consequences of process upsets, such as failed equipment or improper procedures, and guide mitigation strategies including Emergency Relief System (ERS) design
Reaction Calorimetry
Data yield heat and gas removal requirements to control the desired process chemistry
Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Cable Testing
Evaluate electrical cables to demonstrate reliability and identify defects or degradation
Equipment Qualification (EQ)
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Water Hammer
Analysis and testing to identify and prevent unwanted hydraulic pressure transients in process piping
Acoustic Vibration
Identify and eliminate potential sources of unwanted vibration in piping and structural systems
Gas & Air Intrusion
Analysis and testing to identify and prevent intrusion of gas or air in piping systems
ISO/IEC 17025:2017

Fauske & Associates fulfills the requirements of ISO/IEC 17025:2017 in the field of Testing

ISO 9001:2015
Fauske & Associates fulfills the requirements of ISO 9001:2015
Dust Hazards Analysis
Evaluate your process to identify combustible dust hazards and perform dust explosion testing
On-Site Risk Management
On-site safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up
DIERS Methodology
Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods
Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safely handle the effluent discharge from an overpressure event

FATE™ & Facility Modeling

FATE (Facility Flow, Aerosol, Thermal, and Explosion) is a flexible, fast-running code developed and maintained by Fauske and Associates under an ASME NQA-1 compliant QA program.

Mechanical, Piping, and Electrical
Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid, flow, and electric power systems
Hydrogen Safety
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Thermal Hydraulics
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Nuclear Safety
Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant
Radioactive Waste
Safety analysis to underpin decomissioning process at facilities which have produced or used radioactive nuclear materials
Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory

FERST

Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions

FATE

Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities

Blog

Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.

Resources

With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Recent Posts

Dust Explosion Tested at Auto Facility in San Antonio?

Posted by Fauske & Associates on 10.01.18
Go/no-go chart
Go/No-Go Test Chart

Per DustSafetyScience.com, "Fire Crews Respond to Dust Explosion at Toyota Facility in San Antonio", on September 20, 2018, a paint vapor is cited as a cause of a dust explosion with in a paint scrubber system. Thankfully, no injuries were reported. Though they'd recently undergone a partial OSHA inspection, they'd not been cited for dust.

On the same day, a scrap metal refinery in Whiting, Indiana reported a dust fire in a baghouse. Also, no injuries reported though firefighters fought bad smoke. Unfortunately, incidents of dust explosibity continue despite easy testing methods.

It can start with a simple Go/No-Go Test.

Very often, when performing dust and explosibility testing quotes for customers, we are asked what exactly a Go/No-Go test is? While we offer a list of testing services to determine the deflagration hazards of dust samples per ASTM (American Society of Testing and Materials), OSHA (Occupational Health & Safety Administration, NFPA (National Fire Protection Agency) and UN (United Nations), knowing what this basic test is can go a long way for tackling your safety needs.

In order to "screen" for the possibility of dust explosibility in your facility, we perform a Go/No-Go Screening Test. Based on ASTM E1226, "Standard Test Method for Explosibility of Dust Clouds", this test is an abbreviated set explosion severity method with three dust concentrations to determine if the sample is explosible. This test is generally performed with samples tested "as received" or sieved with a 40 mesh (420μm) screen and using one 5-kJ chemical igniter as the ignition source. [>100 grams (~¼ lb) of sample less than 420μm required]

In the article: "How To Collect and Ship Combustible Dust Samples For Testing", we discuss the simple steps for getting your samples to a lab for testing. See above for our chart that depicts the outcomes for your dust tested. If your test sample is a "Yes, it explodes" then further tests can be run to determine how quickly and how severe the explosion will be (KSt/Pmax Test), followed by testing what concentration of dust in the air will cause a risk of explosion (MEC Test). Next, another test can determine if a spark will cause an explosion (MIE) test.

But, what if your Go/No-Go test result is a "no"? Well, we next look at what temperature it will take make your dust layer ignite. To find the Minimum Autoignition Temperature (MIT) of a dust cloud in the air, the MIT tests the minimum temperature that would cause your dust cloud to ignite. Next, is the LIT Test, which determines the hot-surface ignition temperature of dust layer. Finally, a Burn Rate test is conducted to determine how quickly the dust material will burn.
All of these tests start with the Go/No-Go Test. A comprehensive DHA or Process Hazards Analysis (PHA) can apply your test results to real world scenarios at your facility. Better to know wha t you are dealing with so you can plan safely! In addition, if you have a dust collector and aren't sure what to do next, read: "Combustible Dust Made Easy".

Here are some other tests run for dust explosibility screening:

  • Combustible Dust Hazard Screening Test - Based on VDI2263 and UN 4.1 combustion testing. This test is to determine if a dust in a pile supports self-sustaining flame propagation. [>30 grams(~1oz)of sample less than 420μm required; >300 grams (~2/3 lb) of sample less than 420μm required if testing metal dusts]
  • Go/No-Go Screening + Combustible Dust Screening Package - Both tests run in tandem as a screening package
  • Sample Characterization Test - includes determining the sample moisture content and particle size distribution [>30 grams of samples less than 420μm required]
  • “Hard-to-ignite” Explosibility Test - Tested as above but with a 400 J ignition source. [>100 grams (~¼ lb) of sample less than 420μm required]

Unless otherwise instructed, dust testing is performed on the sample as it is received (“as received”) from your facility as mentioned earlier. It may be screened to less than 420 μm (40 mesh) – OSHA’s and NFPA’s demarcation of a “dust” – to facilitate dispersion into a dust cloud. Particle size may vary widely depending on the sample. 

Please note that per ASTM recommendations (and some NPFA requirements); samples should be tested at a particle size less than 75 μm and less than 5% moisture. Please also note that testing materials in a method not complying with the ASTM/EU recommendations may produce explosion severity and explosion sensitivity data that is not considered conservative enough for explosion mitigation design.

Need more help with possible hazardous or combustible dust, vapors and gases?  You can send materials to us or have our experts visit you for on-site services.  We provide comprehensive process safety management (PSM) services. Contact us at 630-323-8750, info@fauske.com.

Combustible Dust Case Study

Topics: Combustible Dust

cta-bg.jpg

Is My Dust Combustible?

A Flowchart To Help You Decide
DOWNLOAD NOW