Hazards Analysis, Code Compliance & Procedure Development

Services to identify process safety hazards and facilitate compliance with established standards and codes.

Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Flammable Gas & Vapor Testing

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

Chemical Reactivity Testing

Laboratory testing to quantify reactive chemical hazards, including the possibility of material incompatibility, instability, and runaway chemical reactions

DIERS Methodology

Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods

Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safety handle the effluent discharge from an overpressure event

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature


Classification of hazardous materials subject to shipping and storage regulations

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents


Model transport of airborne virus aerosols to guide safe operations and ventilation upgrades


Model transport of contamination for source term and leak path factor analysis

Fire Analysis

Model transport of heat and smoke for fire analysis

Flammable or Toxic Gas

transport of flammable or toxic gas during a process upset

OSS consulting, adiabatic & reaction calorimetry and consulting

Onsite safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up

Mechanical, Piping, and Electrical

Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid flow, electric power systems

Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Hydrogen Safety

Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen

Spent Fuel

Safety analysis for packaging, transport, and storage of spent nuclear fuel

Decommissioning, Decontamination and Remediation (DD&R)

Safety analysis to underpin decommissioning process at facilities which have produced or used radioactive nuclear materials

Laboratory Testing & Software Capabilities

Bespoke testing and modeling services to validate analysis of DD&R processes

Nuclear Overview

Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant.

Severe Accident Analysis and Risk Assessment

Expert analysis of possible risk and consequences from nuclear plant accidents

Thermal Hydraulics

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Environmental Qualification (EQ) and Equipment Survivability (ES)

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Laboratory Testing & Software Capabilities

Testing and modeling services to support resolution of emergent safety issues at a power plant

Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory


Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions


Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities


Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.


With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Recent Posts

Innovative Nuclear Waste Hydrogen Removal-design Shielded-container Solution Introduced

Posted by The Fauske Team on 05.17.17

In partnership, Sellafield ltd., Westinghouse Electric UK, and Fauske & Associates have conceived, modeled and experimentally verified an innovative solution to the problem of hydrogen removal from shielded containers with significant hydrogen generation rates. This solution permits passive storage of spent metallic nuclear fuel and zeolytes in a shielded container that is vented by a practical number of commercially available filters.20131024-2MGP.png

Nuclear wastes that contain metallic spent nuclear fuel pieces or sludge generate hydrogen through radiolysis and chemical reactions. These waste materials may be stored in shielded boxes with filtered vents for removal of the hydrogen to prevent formation of flammable gas mixtures. Commercially available filters are designed for applications without shielding, such as to fit the bung (opening) of a 200 L drum. Bore holes drilled through shielding add resistance to hydrogen removal that can allow unwanted hydrogen accumulation. This article explains the hydrogen accumulation problem and offers a proven solution. 
The innovative work described here was performed by Fauske Associates, LLC, a wholly owned subsidiary of Westinghouse Electric Company, LLC, in partnership with Sellafield, Ltd. In partnership, we have conceived, modeled, and tested an effective method for hydrogen removal from shielded boxes with significant hydrogen rates. This hydrogen removal method minimizes the number of filters required for passive storage of spent metallic nuclear fuel pieces and zeolites.

Hydrogen Removal Through Commercial Filters 

According to Martin G. Plys, ScD, Vice President, Waste Technology and Post-Fukushima Services at Fauske & Associates, LLC,: "A number of manufacturers supply filters that are suitable for removal of hydrogen from unshielded nuclear waste containers such as 200 L drums. The rate of hydrogen removal through a filter varies with filter size and materials. The key filter specification provided by the manufacturer is known as the filter coefficient, expressed in units of moles hydrogen per second per mole fraction difference across the filter. Typical values range from 10-5 to over 2x10-4 moles/s/mole fraction. The size of filter for a given application is chosen based on the hydrogen concentration: either the lower flammability limit (LFL), 4% hydrogen in air) or the more strict criterion of 25% of the LFL, (which is 1% hydrogen in air).

Hydrogen Removal Problem Through Shielding

Shielded containers are made of much thicker materials than conventional containers. In order for the hydrogen to escape from the container, it must first pass through a channel drilled into the shielding material (the flow path) then through the filter and out into the surrounding atmosphere. The rate at which hydrogen escapes from the container depends upon the difference in hydrogen concentration between the two sides of the filter. Because shielding keeps the fuel, and the bulk of the hydrogen, away from the filter, the hydrogen flow rate through the filter is reduced. So, removal of hydrogen through any filter is less effective in a shielded container than it would be for the same filter on an unshielded container.

Hydrogen removal from shielded containers poses a greater problem in some cases than others. For systems where the hydrogen source is radiolysis, this is usually not an issue. However, for systems where the hydrogen source is chemical reactions, the source rate is typically much larger than from radiolysis, and this might make hydrogen removal impractical.

For example, a shielded container with a bore hole of 20 mm diameter and 300 mm length drilled through the shielding would allow hydrogen to escape at only one-tenth the rate that it would in an unshielded container (in engineering terms, the system efficiency is 10%). As a consequence, the number of filters required would increase tenfold."

Innovative Solution for Hydrogen Removal

Continues Plys: "The key to hydrogen removal from a shielded container is to reduce the flow resistance such that the filter is the main resistance. Consider an arrangement to promote hydrogen circulation to the filter via a pair of bore holes in the shielded container lid, Figure 1. The hydrogen concentration in a plenum immediately on the inside of the filter is lower than the hydrogen concentration in the container so the density difference induces circulation. Gas from the container flows up one of the bore holes into the plenum beneath the filter and then down the other bore hole, returning to the container. In Figure 1, the bore holes are indicated on an angle for shielding purposes, and in practice a double-angle design would be used to prevent a direct straight line path through the container lid.

20131024-2MGP (1).png

Figure 1. Double bore hole arrangement with single filter

We have performed modeling for this design which demonstrates that the efficiency of the double bore system can be in the range of 80% to 90%, depending upon the geometry and the hydrogen concentration in the container. Thus, the number of filters required for a given application may be, for practical purposes, unaffected by the extra resistance offered by the shielding, and at worst it is only weakly affected.

We have confirmed the expected performance of the dual-bore design through experiments for different filter types and variation in hydrogen concentration. An example comparison of a priori expectation versus actual system data is shown in Figure 2." (See attachment for Figure 2).

MP fig 2.png

Figure 2. Experimental Results and Model Predictions 

Implication and Conclusions 

In partnership, Sellafield Ltd., Westinghouse Electric UK, and Fauske & Associates, LLC have conceived, modeled and experimentally verified an innovative solution to the problem of hydrogen removal from shielded containers with significant hydrogen generation rates. This solution permits passive storage of spent metallic nuclear fuel and zeolytes in a shielded container that is vented by a practical number of commercially available filters.

Founded in 1980 by Hans Fauske (D.Sc.), Michael Grolmes (PhD) and Robert Henry (PhD), Fauske & Associates, LLC (FAI) became a wholly owned subsidiary of Westinghouse Electric Co. in 1986. FAI assumed early leadership roles in the acclaimed DIERS program for AIChE and the IDCOR program for the nuclear power industry. These activities led to state-of-the-art methodology and laboratory tools for characterizing chemical systems and computer models for analyzing severe accidents in commercial nuclear power plants used worldwide. Recognized worldwide for phenomenological modeling related to the prevention and accommodation of chemical and nuclear power accidents, FAI also provides advanced training and research in physics, chemical engineering, mechanical engineering, nuclear engineering, computer science and other fields.

FAI has several fully staffed laboratories supporting: EQ, CHAMP, full-scale thermal/hydraulics experiments, and basic physical sciences. FAI has a 10CFR50 Appendix B Quality Assurance (QA) Program and is ISO- 17025/IEC, ISO-9001 and TickIT certified. 

FAI is also recognized for conducting comprehensive plant evaluations. FAI’s Nuclear Systems Group helps its customers enhance the availability and reliability of their operating plants while maintaining regulatory compliance, extending plant life and reducing operation and maintenance costs.

For more information, please contact Martin Plys at 630-887-5207, plys(at)fauske(dot)com

Topics: 652


Is My Dust Combustible?

A Flowchart To Help You Decide
Download Now