Combustible Dust Testing

Laboratory testing to quantify dust explosion & reactivity hazards

Flammable Gas & Vapor Testing

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

Chemical Reactivity Testing

Laboratory testing to quantify reactive chemical hazards, including the possibility of material incompatibility, instability, and runaway chemical reactions

DIERS Methodology

Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods

Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safety handle the effluent discharge from an overpressure event

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

UN-DOT

Classification of hazardous materials subject to shipping and storage regulations

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Biological

Model transport of airborne virus aerosols to guide safe operations and ventilation upgrades

Radioactive

Model transport of contamination for source term and leak path factor analysis

Fire Analysis

Model transport of heat and smoke for fire analysis

Flammable or Toxic Gas

transport of flammable or toxic gas during a process upset

OSS consulting, adiabatic & reaction calorimetry and consulting

Onsite safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up

Mechanical, Piping, and Electrical

Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid flow, electric power systems

Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Hydrogen Safety

Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen

Spent Fuel

Safety analysis for packaging, transport, and storage of spent nuclear fuel

Decommissioning, Decontamination and Remediation (DD&R)

Safety analysis to underpin decommissioning process at facilities which have produced or used radioactive nuclear materials

Laboratory Testing & Software Capabilities

Bespoke testing and modeling services to validate analysis of DD&R processes

Nuclear Overview

Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant.

Severe Accident Analysis and Risk Assessment

Expert analysis of possible risk and consequences from nuclear plant accidents

Thermal Hydraulics

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Environmental Qualification (EQ) and Equipment Survivability (ES)

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Laboratory Testing & Software Capabilities

Testing and modeling services to support resolution of emergent safety issues at a power plant

Adiabatic safety calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment (DSC/ARC supplies, CPA, C80, Super Stirrer)

Products and equipment for the process safety or process development laboratory

FERST

Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions

FATE

Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities

Blog

Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.

Resources

With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Recent Posts

Measuring Heat Flow With Differential Scanning Calorimetry (DSC)

Posted by The Fauske Team on 11.07.13

By AnnMarie Fauske, Fauske & Associates, LLC

DSC Test Cell Loading1 1The Differential Scanning Calorimeter (DSC) measures the heat flow to or from a sample under controlled heating conditions. A small amount of sample (1-10 mg) is contained within a closed crucible and placed into a temperature controlled furnace. A second crucible is used as a reference. The sample is then heated by the temperature controlled furnace. The most commonly used method of temperature control is dynamic (or scanning) mode which utilizes a constant heating rate. Another mode of operation is isothermal mode and is used to maintain a constant temperature. In both of these modes, the heat flow to or from the sample is measured as a function of time and temperature.

DSC data can be used to assess the thermal hazard potential as well as evaluate material properties of a given sample. ASTM Standards commonly used for such evaluations are as follows:

 

  • ASTM E 537-12: Standard Test Method for the Thermal Stability of Chemicals by Differential Scanning Calorimetry
  • ASTM E 698-11: Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method
  • ASTM E 793-06: Standard Test Method for Heats of Fusion and Crystallization by Differential Scanning Calorimetry
  • ASTM E 794-06: Standard Test Method for Melting and Crystallization Temperatures by Thermal Analysis
  • ASTM E 928-08: Standard Test Method for Purity by Differential Scanning Calorimetry
  • ASTM E1269-11 Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry

Fauske & Associates, LLC (FAI) specializes in performing DSC tests on reactive chemical samples. High pressure crucibles are used to accommodate pressure generation due to both vapor and non-condensable gas. FAI is proud to partner with another industry leader, SWISSI Crucibles, to set standards for safety in thermal analysis. SWISSI is known worldwide for their crucibles and FAI is the exclusive North American Distributor for their patented two-piece gold and stainless steel high pressure crucibles (the M20 and F20 , respectively.)Swissi Crucible

Tested up to 200 bar (2900 psi) at 400°C (tested with supercritical water pressure) SWISSI Crucibles are:

  • Compatible
  • Reliable
  • Simple to use
  • Pressure resistant

SWISSI M20 and F20 Crucibles are:

  • Simple: New sealing principle (patented) using only two parts allows for lower sealing pressure
  • Reliable: New construction avoids undesirable surface effects of low viscosity solvents which can result in difficulties involving sealing and artefacts
  • Fast: Low time constant will allow higher heating rates and therefore higher throughput or permit a better signal resolution
  • Universal: Ready to be used with the market leaders’ DSC devices
  • Specifications: mass of 0.98g, height of 4.5mm, diameter of 7.0 mm, internal volume of 20μL

For more information regarding Thermal Stability, DSC or other process safety testing, please contact us at info@fauske.com, 630-323-8750 or www.fauske.com

 

Topics: DSC, Differential Scanning Calorimetry, thermal stability, reactive system, reaction calorimetry, heat flow, ASTM, crucibles, Swissi crucibles

cta-bg.jpg

Is My Dust Combustible?

A Flowchart To Help You Decide
Download Now