Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Gas and Vapor

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

UN-DOT
Classification of hazardous materials subject to shipping and storage regulations
Hydrogen
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

Adiabatic Calorimetry
Data demonstrate the consequences of process upsets, such as failed equipment or improper procedures, and guide mitigation strategies including Emergency Relief System (ERS) design
Reaction Calorimetry
Data yield heat and gas removal requirements to control the desired process chemistry
Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Cable Testing
Evaluate electrical cables to demonstrate reliability and identify defects or degradation
Equipment Qualification (EQ)
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Water Hammer
Analysis and testing to identify and prevent unwanted hydraulic pressure transients in process piping
Acoustic Vibration
Identify and eliminate potential sources of unwanted vibration in piping and structural systems
Gas & Air Intrusion
Analysis and testing to identify and prevent intrusion of gas or air in piping systems
ISO/IEC 17025:2017

Fauske & Associates fulfills the requirements of ISO/IEC 17025:2017 in the field of Testing

ISO 9001:2015
Fauske & Associates fulfills the requirements of ISO 9001:2015
Dust Hazards Analysis
Evaluate your process to identify combustible dust hazards and perform dust explosion testing
On-Site Risk Management
On-site safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up
DIERS Methodology
Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods
Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safely handle the effluent discharge from an overpressure event

FATE™ & Facility Modeling

FATE (Facility Flow, Aerosol, Thermal, and Explosion) is a flexible, fast-running code developed and maintained by Fauske and Associates under an ASME NQA-1 compliant QA program.

Mechanical, Piping, and Electrical
Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid, flow, and electric power systems
Hydrogen Safety
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Thermal Hydraulics
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Nuclear Safety
Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant
Radioactive Waste
Safety analysis to underpin decomissioning process at facilities which have produced or used radioactive nuclear materials
Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory

FERST

Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions

FATE

Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities

Blog

Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.

Resources

With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Recent Posts

Using Finite Element Analysis to Evaluate High Wind Speed Buckling of Storage Tanks

Posted by Fauske & Associates on 01.31.17

By: Karim Dhanji, Sr. Mechanical Engineer, Structural Services & Vibration

Large diameter thin-walled steel tanks are common for fuel and oil storage, particularly in the petroleum industry. The American Petroleum Institute (API) 650 standard is an industry standard on the design of such tanks. Until recently, code provisions were oriented towards the design of tanks operating at high levels of liquids. The emphasis was on preventing failure modes associated with yielding of the shell; thus, the majority of existing tanks were constructed with variable shell thicknesses with tanks getting thinner near the top. However, when these tanks are empty, they are very susceptible to bucking due to high wind loads, particularly on the thin upper shell courses. This was exemplified after Hurricane Katrina and Rita, during which many such storage tanks were damaged due to buckling. To account for the structural stability of the upper shell courses, stiffening rings (commonly called wind girders) are used to reduce the buckling length.

The API-650 standard deals with this problem using empirical design methods for stiffening the tank based on the tank’s thickness, height, and design wind speed. Other codes, such as the more recent EN1993-1-6 European standard, provide analytical relationships for evaluating buckling by verifying the design stresses. However, both standards have been criticized and can provide contradictory results.

In a recent project dealing with an oil storage tank at a nuclear plant, both the API-650 and the finite element software Abaqus was used by Fauske & Associates, LLC (FAI) to evaluate the tank. For the Abaqus analysis, a model of the tank was created using swept hex elements and material properties were defined. Next, a wind load distribution was applied to the exterior of the tank. Wind loads on a tank are asymmetrical as can be seen in Figure 1 below. One method to determine the loading distribution would be to use a scaled model and measure the pressure at various locations (using dimensional analysis techniques). Tanks with a similar height to diameter ratio will have a similar loading distribution. Thus, a literature search was conducted and an appropriate wind load profile was found and inputted into Abaqus. Once the loading was defined, appropriate boundary conditions were applied and a static analysis was performed.

The tank that was analyzed did not have a wind girder, so a static analysis was performed both on the as-designed tank along with a modified tank with a wind girder. Both stresses and displacements were solved for, as can be seen in Figure 2. Using the results of both the finite element analysis along with the empirical methods in the API650, FAI was able to make recommendations to the customer to safeguard their fuel storage tank from buckling when it operates at low liquid levels.

typical-cing-loading-distribution-for-a-cylindrical-structure

 

storage-tank

cta-bg.jpg

Is My Dust Combustible?

A Flowchart To Help You Decide
Download Now