Combustible Dust Testing

Laboratory testing to quantify dust explosion & reactivity hazards

Flammable Gas & Vapor Testing

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

Chemical Reactivity Testing

Laboratory testing to quantify reactive chemical hazards, including the possibility of material incompatibility, instability, and runaway chemical reactions

DIERS Methodology

Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods

Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safety handle the effluent discharge from an overpressure event

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

UN-DOT

Classification of hazardous materials subject to shipping and storage regulations

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Biological

Model transport of airborne virus aerosols to guide safe operations and ventilation upgrades

Radioactive

Model transport of contamination for source term and leak path factor analysis

Fire Analysis

Model transport of heat and smoke for fire analysis

Flammable or Toxic Gas

transport of flammable or toxic gas during a process upset

OSS consulting, adiabatic & reaction calorimetry and consulting

Onsite safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up

Mechanical, Piping, and Electrical

Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid flow, electric power systems

Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Hydrogen Safety

Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen

Spent Fuel

Safety analysis for packaging, transport, and storage of spent nuclear fuel

Decommissioning, Decontamination and Remediation (DD&R)

Safety analysis to underpin decommissioning process at facilities which have produced or used radioactive nuclear materials

Laboratory Testing & Software Capabilities

Bespoke testing and modeling services to validate analysis of DD&R processes

Nuclear Overview

Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant.

Severe Accident Analysis and Risk Assessment

Expert analysis of possible risk and consequences from nuclear plant accidents

Thermal Hydraulics

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Environmental Qualification (EQ) and Equipment Survivability (ES)

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Laboratory Testing & Software Capabilities

Testing and modeling services to support resolution of emergent safety issues at a power plant

Adiabatic safety calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment (DSC/ARC supplies, CPA, C80, Super Stirrer)

Products and equipment for the process safety or process development laboratory

FERST

Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions

FATE

Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities

Blog

Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.

Resources

With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Mechanical & Electrical Engineering

Mechanical Engineering Services

Many of the solutions that Fauske & Associates, LLC develops for our chemical, industrial and nuclear customers can also be successfully applied inPipe Clamp & Safety Consulting Engineers other industries.  For example, we patented vibration sensing clamps for a nuclear power plant that could very easily be applied and installed on piping systems at many other types of facilities.

Mechanical Expertise - Our highly qualified staff of mechanical engineers are skilled in many different areas including statics, dynamics, modal analysis, heat transfer, fracture mechanics, mechanical vibrations, flow induced vibrations, acoustic vibrations, etc.  In addition, we are also involved with providing solutions for many different types of turbines.  Many of the turbines used in nuclear power plants are identical to those that are used in fossil power plants, chemical plants and other industries.

power-generation-services-dust-explosion

Interested in learning more about our Piping Engineering Services?

Click  Here

Electrical Engineering Services

Fauske & Associates, LLC offers a wide-range of electrical engineering services and capabilities which include the following:

ARC FLASH HAZARD ANALYSIS AND RISK ASSESSMENT

OSHA requires that employers implement and document an electrical
Arc Flash & Safety Consulting Engineerssafety program to protect their employees from electrical hazards such as shock and arc flash.  National Fire Protection Association (NFPA) Standard 70E is the consensus standard for electrical safety in the workplace and as such OSHA uses this standard when determining compliance.

Fauske & Associates, LLC (FAI) has a highly qualified staff of electrical engineers who can assess and make recommendations to mitigate risk associated with electrical hazards in your workplace such as shock and arc flash.  Key components of the FAI process are as follows:

  • Assessment - Our electrical engineers will perform a thorough review and assessment of your entire electrical power system which begins with a site visit to collect and visually verify key data such as single-line diagrams, equipment nameplate data, protective device settings and other required electrical drawings
  • Modeling - Your entire electrical power system will then be modeled using ETAP, SKM Power*tools or equivalent electrical engineering software (based upon customer preference) using the information that was gathered during our site visit
  • Analysis - Our electrical engineers will analyze all short-circuit, incident energies and protective device coordination data resulting from the electrical power system modeling and studies to determine the adequacy of circuit breaker interrupt and bus bracing ratings, in addition to the minimum levels of personal protective equipment (PPE) required for the protection of your employees
  • Reporting - A report will be generated which highlights all of the risks within your facility and electrical power system (as compared to NFPA 70E criteria) which will be presented to all of your key stakeholders
  • Labeling - All applicable electrical equipment in your facility will be appropriately labeled in accordance with NFPA 70E requirements by our team of electrical engineers and technicians
  • Training - Your employees will receive training that is tailored to your needs that will specifically highlight the risks present in your workplace along with the required PPE and safe work practices necessary to mitigate those risks

Materials Testing - Dynamic Mechanical Analysis (DMA)

Dynamic Mechanical Analysis is a state-of-the-art technique for understanding how the mechanical properties of a material behave as a function of time, temperature and frequency. Fauske & Associates, LLC (FAI) uses this effective method for characterizing the viscoelastic behavior of plastics, rubbers, and other polymeric materials.

FAI utilizes the Q800 DMA manufactured by TA instrumentsWhat can be characterized by DMA:

  • Viscoelastic Behavior
  • Damping Behavior
  • Creep and Stress Relaxation
  • Glass and Secondary Transitions
  • Curing Behavior

Available Modes of Deformation:

  • 3-point Bending
  • Single/Dual Cantilever
  • Compression
  • Tension
  • Shear

Typical Test Modes:

  • Multi-Frequency: the multi-frequency mode can assess viscoelastic multi-frequency-diagramproperties as a function of frequency, while
    oscillation amplitude is held constant. These tests can be run at single or multiple frequencies, in time sweep, temperature ramp, or temperature step/hold experiments.
  • Multi-Stress/Strain: in this mode, frequency and temperature aremulti stress strain held constant, and the viscoelastic properties are monitored as % strain or the stress is varied. This mode is primarily used to identify the Linear Viscoelastic Range (LVR).
  • Creep/Stress Relaxation: With cree, the stress is help constant and deformation is monitored creep stress relaxationas a function of time. In stress relaxation, the strain is held constant and the stress is monitored vs. time.
  • Controlled Force/Strain Rate: In this mode, the temperature is held constant while stress or strain is ramped at a constant rate. controlled forced strain rateThis mode is used to generate stress/strain plots to obtain Young's Modulus. Alternatively, stress can be held constant with a temperature ramp while strain is monitored.
  • Isotrain: With this mode, strain is held constant during a temperature ramp. Iisotrain-diagramsostrain can be used to assess shrinkage force in films and fibers.
CTA_Strip_Bg-1.jpg

Improve safety, reduce operating costs, increase productivity, and establish a competitive advantage

Learn more about PSM programs