Hazards Analysis, Code Compliance & Procedure Development

Services to identify process safety hazards and facilitate compliance with established standards and codes.

Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Flammable Gas & Vapor Testing

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

Chemical Reactivity Testing

Laboratory testing to quantify reactive chemical hazards, including the possibility of material incompatibility, instability, and runaway chemical reactions

ISO Accreditation and Scope
Fauske & Associates fulfills the requirements of ISO/IEC 17025:2017 in the field of Testing
DIERS Methodology

Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods

Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safety handle the effluent discharge from an overpressure event

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

UN-DOT

Classification of hazardous materials subject to shipping and storage regulations

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Biological

Model transport of airborne virus aerosols to guide safe operations and ventilation upgrades

Radioactive

Model transport of contamination for source term and leak path factor analysis

Fire Analysis

Model transport of heat and smoke for fire analysis

Flammable or Toxic Gas

transport of flammable or toxic gas during a process upset

OSS consulting, adiabatic & reaction calorimetry and consulting

Onsite safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up

Mechanical, Piping, and Electrical

Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid flow, electric power systems

Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Hydrogen Safety

Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen

Spent Fuel

Safety analysis for packaging, transport, and storage of spent nuclear fuel

Decommissioning, Decontamination and Remediation (DD&R)

Safety analysis to underpin decommissioning process at facilities which have produced or used radioactive nuclear materials

Laboratory Testing & Software Capabilities

Bespoke testing and modeling services to validate analysis of DD&R processes

Nuclear Overview

Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant.

Severe Accident Analysis and Risk Assessment

Expert analysis of possible risk and consequences from nuclear plant accidents

Thermal Hydraulics

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Environmental Qualification (EQ) and Equipment Survivability (ES)

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Laboratory Testing & Software Capabilities

Testing and modeling services to support resolution of emergent safety issues at a power plant

Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory

FERST

Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions

FATE

Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities

Blog

Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.

Resources

With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Severe Accident Management

Background

Fauske and Associates, LLC (FAI) was the principal author of the original Severe Accident Management (SAM) Technical Basis Report (TBR) (FAI/91-19 Volumes 1 and 2 also known as EPRI TR-101869).  This report provided the technical bases upon which the PWR Owners Groups at the time (Westinghouse (WOG), Combustion Engineering (CEOG), and Babcock & Wilcox (B&WOG)) developed generic severe accident management guidance (SAMG) support material, which served as a framework for each utility’s plant-specific SAMG program within accident management companies.

In the aftermath of the Fukushima accident, EPRI commissioned an update to the original TBR, and FAI again was a principal author in this update.  In addition to the immediate insights from the Fukushima accident, all the accident management companies and the TBR update also incorporates a significant amount of research and experimental information that post-dated the original TBR and therefore was absent from the technical basis.

CONCERNS

During the EPRI-sponsored industry discussions prior to the commissioning of the TBR update, it was clear that, as the regulator, the U.S. Regulator NRC would be scrutinizing plant-specific SAMG implementations in the aftermath of Fukushima.  There was particular concern within the industry as to whether the original SAMG plans were sufficiently robust to withstand substantially heightened regulatory scrutiny, particularly for Fukushima issues such as a nearly complete instrument blackout and hydrogen deflagration in reactor buildings which may not have been prominent issues in the original TBR.

EXPERTISE/SOLUTIONS

While FAI leveraged its severe accident technical basis experience within the SAM TBR in its post-TMI and post-Fukushima evolutions, Westinghouse Electric Company, the parent company of FAI, focused on implementation of the TBR into the actual plant-specific SAMG implementation programs for customer sites.   Thus, FAI and Westinghouse have maintained complementary SAMG capabilities which can be utilized to assist customers with preparing for NRC inspections. Fauske & Associates is one of the best accident management company.

CTA_Strip_Bg-1.jpg

Dynamic Benchmarking of Simulation Codes

Read Now