Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Gas and Vapor

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

Classification of hazardous materials subject to shipping and storage regulations
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

Adiabatic Calorimetry
Data demonstrate the consequences of process upsets, such as failed equipment or improper procedures, and guide mitigation strategies including Emergency Relief System (ERS) design
Reaction Calorimetry
Data yield heat and gas removal requirements to control the desired process chemistry
Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Cable Testing
Evaluate electrical cables to demonstrate reliability and identify defects or degradation
Equipment Qualification (EQ)
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Water Hammer
Analysis and testing to identify and prevent unwanted hydraulic pressure transients in process piping
Acoustic Vibration
Identify and eliminate potential sources of unwanted vibration in piping and structural systems
Gas & Air Intrusion
Analysis and testing to identify and prevent intrusion of gas or air in piping systems
ISO Accreditation and Scope

Fauske & Associates fulfills the requirements of ISO/IEC 17025:2017 in the field of Testing

Dust Hazards Analysis
Evaluate your process to identify combustible dust hazards and perform dust explosion testing
On-Site Risk Management
On-site safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up
DIERS Methodology
Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods
Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safely handle the effluent discharge from an overpressure event


Model transport of airborne virus aerosols to guide safe operations and ventilation upgrades

Model transport of contamination for source term and leak path factor analysis
Fire Analysis
Model transport of heat and smoke for fire analysis
Flammable or Toxic Gas

Model transport of flammable or toxic gas during a process upset

Mechanical, Piping, and Electrical
Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid, flow, and electric power systems
Hydrogen Safety
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Thermal Hydraulics
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Nuclear Safety
Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant
Radioactive Waste
Safety analysis to underpin decomissioning process at facilities which have produced or used radioactive nuclear materials
Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory


Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions


Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities


Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.


With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Published September 7, 2017

Hartman Tube Combustible Dust Explosion

HubSpot Video

This is a combustible dust cloud explosion pre-screening test. This test is performed based on procedures from VDI 2263, Part 1 (Section 2.1.1), “Dust fires and dust explosions; hazards, assessment, protective measures”, using a Modified Hartmann Apparatus with a 10 J AC electric arc. The material tested here is a fine metallic powder which was determined to have an Explosion Severity ratio of 0.4 – based on subsequent testing. The pre-screening test in the Modified Hartmann Apparatus is a precursor to the standard explosion screening test conducted per ASTM E1226 Section 13. Both tests, when used in conjunction, can be used as a tool to ascertain if a given sample of dust poses an explosion risk if suspended into a cloud in air in the presence of an ignition source.

In response to frequent requests, Fauske & Associates,LLC (FAI) announces the availability of a portable Hartmann Dust Testing apparatus that can be used on-site at a client’s facility. The practicality of this device is its simplicity to test and determine if dusts in question are classified as combustible; it uses a very small sample size (0.3 - 3.0 grams). The portability aspect is appealing as the device can be brought onto the plant site and local samples can be tested in a very short time, providing an instant identification of combustible materials. Applications include, but are not limited, to combustible testing of: floor and process samples per NFPA 654/OSHA CPL 03-00-008, R&D, process development, and commercial scale-up of starting materials, isolated intermediates and final products, including final packaged forms with excipients. The data can be used internally or shared using Material Safety Data Sheets. The device conforms to EU and UN test requirements. We can send an engineer with the device or we can train plant personnel to use it.

The modified Hartmann apparatus consists of a dispersion cup, a PTFE tube holder and a glass tube with a volume of 1.0 liter. By means of pressurized air a quantity of the powder sample is suspended in the presence of an ignition source. The ignition source used for the tests is a continuous spark generated by a high voltage transformer between two standardized electrodes placed near the bottom of the cylindrical tube. The energy content of the spark corresponds to an equivalent energy of about 10 Joule of a discharge spark.

Powder concentrations in air are between 30 mg - 3000 mg/liter (30 - 2500 g/m3). A powder is considered to be explosible if dust fires or explosions are observed during the tests. If no dust fires or explosions are observed in three-series of tests for any concentration, the powder is considered to be not explosible at the conditions of the test.

If the process that you suspect could contain combustible dust, it would be prudent to contact us for advice or if you would like more information on this portable equipment, please contact us at

Sign up for our newsletter to Get all the latest information

Share this article

Find more resources articles