Background
Adiabatic calorimeter testing provides data for relief system design, safe scale-up of chemical processes, and changes to process recipes. Safe process design requires knowledge of chemical reaction rates, character and energy release - all of which can be obtained from a low phi-factor adiabatic calorimeter such as the VSP2TM (Vent Sizing Package 2) or ARSSTTM (Advanced Reactive System Screening Tool).
Benefits
The VSP2 TM and the ARSST TM provide thermal data required for safe scale-up of chemical processes and changes to process recipes. A variety of process upset conditions can be tested to quantify hazards identified by a PHA or HAZOP study. The low phi-factor (or thermal inertia) allows the heat and gas generation rates to be measured and directly applied to the process scale, which leads to appropriately designed emergency relief systems.
Fauske & Associates, LLC (FAI) was the principal research contractor for the Design Institute for Emergency Relief Systems (DIERS), an extensive R&D program sponsored by 29 companies under the auspices of AIChE and completed in 1985. Company founder, Dr. Hans K. Fauske served as the principal investigator and overall leader of the DIERS research project. A primary purpose of that effort was evaluation of emergency relief vent requirements, including energy and gas release rates for systems under upset conditions and the effect of two phase flow on the emergency discharge process.
The DIERS program resulted in the development of a bench scale low thermal inertia adiabatic calorimeter, which was first commercialized as the Vent Sizing Package (VSPTM). Later improvements led to the VSP2TM. The Reactive System Screening Tool (RSST TM) was introduced by FAI in 1989 to provide an easy, inexpensive approach to the DIERS testing method. Recent enhancements led to the Advanced RSST (ARSSTTM) in 1999. FAI uses the DIERS-based VSP2TM and ARSSTTM calorimeters to characterize chemical systems and design emergency pressure relief systems. Both instruments provide vent sizing data that are directly applicable to the process scale.
Background
Fauske & Associates, LLC's (FAI) Advanced Reactive System Screening ToolTM (ARSST) is a low thermal inertia calorimeter used to obtain critical upset process design data. FAI offers the ARSST along with options for customization such as a high-pressure vessel and flow regime detector, as well as commonly used items such as test cells, heaters, glands and thermocouples. At FAI, we not only utilize the ARSSTTM in our fully equipped hazards laboratory but we also manufacture and sell the calorimeter for use by our clients.
The ARSSTTM is based on DIERS two-phase methodology which is recognized by OSHA as an example of good engineering practice. This easy-to-use device is also capable of generating low phi-factor data for DIERS vent sizing and is an excellent tool for industry as well as any university engineering lab for research or unit operation studies.
ARSSTTM tests are used to model such upset scenarios as loss of cooling, loss of stirring, mischarge of reagents, mass-loaded upset, batch contamination and fire exposure heating. This easy to use and cost-effective calorimeter can quickly and safely identify potential reactive chemical hazards in the process industry. ARSSTTM data yields critical experimental knowledge of the rates of temperature and pressure rise during a runaway reaction, thereby providing reliable energy and gas release rates which can be applied directly to full scale process conditions.
The ARSSTTM typically utilizes a sample size of 5-10 grams in a lightweight glass test cell with a volume of approximately 10 ml. The test cell is outfitted with a belt heater (used to heat the sample through a preprogrammed temperature scan) and then installed in 350 ml containment vessel. Tests are typically run using open test cell methodology. In this test configuration, the test cell is vented to the containment vessel. Volatilization of the test sample is prevented by imposing an inert backpressure on the containment vessel.
Benefits
The ARSSTTM enables users to quickly obtain reliable adiabatic data which can be used for a variety of safety applications including characterization of material compatibility, thermal stability and reaction chemistry. Test data includes adiabatic rates of temperature and pressure change which, due to the low thermal inertia, can be directly applied to process scale to determine relief vent sizes, quench tank designs and other relief system design parameters related to process safety management.
Features
Applications
Background
Fauske & Associates, LLC's (FAI) Vent Sizing Package 2™ (VSP2™) is a low thermal inertia adiabatic calorimeter used for process hazard characterization that utilizes state-of-the-art DIERS technology to obtain critical upset process design data. It is the commercial version of the original DIERS
Its versatile and innovative design allows the VSP2TM to simulate upset (abnormal) conditions which might lead to a runaway chemical reaction (e.g. loss of cooling, loss of stirring, mischarge of reagents, mass-loaded upset, batch contamination, fire exposure heating, etc). Resulting temperature and pressure rise rates are directly scalable since it is a low thermal inertia (phi-factor) apparatus.
Benefit
The VSP2TM utilizes established DIERS technology to identify and quantify process safety hazards so they can be prevented or accommodated by process design.
Test data includes adiabatic rates of temperature and pressure change which, due to the low thermal inertia, can be directly applied to process scale to determine relief vent sizes, quench tank designs and other relief system design parameters related to process safety management. Adiabatic data obtained with the VSP2TM can be used to characterize reactive chemical and consequences that could occur due to process upset conditions.
Features
The versatile configurations offered by the VSP2TM design directly
Applications
Use of the VSP2TM can help users obtain complete chemical system data such as:
FAI has also created the PrEVent software to allow users to implement practical emergency vent sizing using industry recognized methodology. It applies DIERs methodology (including the Leung-Omega and Fauske methods) for reactive chemistry and API 520/2000 or NFPA 30 for non-reactive systems.
Fauske & Associates, LLC (FAI) has been the industry leader in adiabatic calorimetry since the concept of DIERS testing was first introduced in 1985.
Our team is happy to help train your staff in the understanding of technical issues, process safety programs or audits, regulations and more. We perform process safety audits as part of a comprehensive hazards analysis and can work with you to make sure your staff is supplied with skills training needs in many ways including:
Level I - Gap Analysis
Level II - training & consulting
Level III - Program Development and Implementation
Partial List of Services Offered:
• Reviews and upgrades of all your safety process systems and regulatory requirements
• VPP Consulting
• Audits, reviews, and upgrades of all your Operating, Safety, and Maintenance Procedures
• Training program evaluations for both completeness and effectiveness (from technical skills to professional development) and upgrades where
needed
• Reviews and upgrades of your program elements such as Employee Participation and Process Safety Information for effectiveness and completeness
• Work process effectiveness evaluations and upgrades
• Overall organizational development (e.g., motivation, work processes)
• Stress reduction
• Evaluations of the effectiveness of communication
We design, custom develop and deliver any site specific training materials needed by your organization. Our Consultants, Engineers and Technical Specialists are available to deliver the classroom, lab or on-the-job training your staff needs. In addition, we will assist with the identification and procurement of commercially available training materials where available.