Hazards Analysis, Code Compliance & Procedure Development

Services to identify process safety hazards and facilitate compliance with established standards and codes.

Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Flammable Gas & Vapor Testing

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

Chemical Reactivity Testing

Laboratory testing to quantify reactive chemical hazards, including the possibility of material incompatibility, instability, and runaway chemical reactions

DIERS Methodology

Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods

Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safety handle the effluent discharge from an overpressure event

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature


Classification of hazardous materials subject to shipping and storage regulations

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents


Model transport of airborne virus aerosols to guide safe operations and ventilation upgrades


Model transport of contamination for source term and leak path factor analysis

Fire Analysis

Model transport of heat and smoke for fire analysis

Flammable or Toxic Gas

transport of flammable or toxic gas during a process upset

OSS consulting, adiabatic & reaction calorimetry and consulting

Onsite safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up

Mechanical, Piping, and Electrical

Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid flow, electric power systems

Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Hydrogen Safety

Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen

Spent Fuel

Safety analysis for packaging, transport, and storage of spent nuclear fuel

Decommissioning, Decontamination and Remediation (DD&R)

Safety analysis to underpin decommissioning process at facilities which have produced or used radioactive nuclear materials

Laboratory Testing & Software Capabilities

Bespoke testing and modeling services to validate analysis of DD&R processes

Nuclear Overview

Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant.

Severe Accident Analysis and Risk Assessment

Expert analysis of possible risk and consequences from nuclear plant accidents

Thermal Hydraulics

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Environmental Qualification (EQ) and Equipment Survivability (ES)

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Laboratory Testing & Software Capabilities

Testing and modeling services to support resolution of emergent safety issues at a power plant

Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory


Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions


Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities


Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.


With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Recent Posts

Process Safety Strategy – Chemical Reaction Hazard

Posted by Himanshu Chichra on 05.30.19

By Himanshu Chichra, Principal Process Safety Engineer and host of ‘Process Safety and Risk Blog’ www.staub-ex.blogspot.com

First, of all, I would like to thank Fauske & Associates LLC (FAI) for their continuous support and for publishing my last blog post "Should Set Point For Pressure Relieving Device Be Equivalent to Design Pressure?" on their website.

As per the research conducted by Dr Phil Nolan (South Bank University, UK) and Dr. John Barton (UK Health and Safety Executive) and graduate students based on data analysis, the following four gaps have contributed equally i.e. 25% each to thermal runaway reactions leading to multiple incidents in past:

1. Lack of proper understanding of the thermochemistry (heat of reaction) and chemistry (balanced chemical equation)

2. Insufficient engineering design for reactor heat transfer system

3. Inadequate control and safety back-up systems including emergency relief systems, process vent, and other engineering controls

4. Poorly written batch procedures and insufficient operator training

Concept Sciences Inc. Explosion
Concept Sciences Inc. Explosion

Hence, it is imperative to develop a process safety strategy to address these four gaps. A process safety strategy should include the following:

1. Preliminary Hazard Analysis (Screening)

  • Review the molecular structure of known reactive groups and the balanced chemical equations
  • Conduct literature searches (SDS, NFPA, Bretherick's, Heat of Reaction Theoretical Calculations, CHETAH calculations, chemical compatibility, etc.)
  • Perform small-scale thermal stability tests (Example: DSC)

2. Assess the Desired Reaction

  • Conduct Reaction Calorimetry testing on the reaction of interest and the subsequent quench reaction
  • How much heat (or gas) is generated? Is cooling adequate?
  • If a scale-up assessment suggests a much longer addition is needed to allow the available cooling capacity to maintain temperature control, does the desired reaction still perform to standard (i.e. produce the same quality product as was made in the lab)?

3. Assess the Undesired or Decomposition Reaction

  • Conduct Adiabatic Calorimetry testing (Example: VSP2) to obtain data on temperature and pressure vs. time
  • From the Adiabatic data evaluate the rates of temperature and pressure rise.
  • How fast is heat (or gas) generated?
  • Is the pressure relief system adequate, both in terms of the relief vent area and set pressure?

Dr. James P. Burelbach, Director Process Safety at Fauske & Associates LLC says, "Reaction Calorimetry and Adiabatic Calorimetry are two distinctly different things that both have their place in a process safety strategy. Sometimes, it is a challenge to help people understand the difference and sometimes people think that by getting an RC1 or similar they are covered as far as process safety calorimetry goes. I think this can be a very dangerous approach. I try to simplify by saying that reaction calorimetry helps you understand the desired chemical reactions (for example to design process heat removal systems) while adiabatic calorimetry helps you understand (and prepare for) undesired chemical reactions (for example to ensure there is an adequate pressure relief system if process cooling is lost)."

4. Review Batch Directions and Operator Training

  • Batch review meetings to ensure procedures are correct
  • Operator training to ensure a clear understanding of the procedures

5. Reduce risk or redesign process

  • Mitigation by having an adequately sized pressure relief system (might include dump tank)
  • Redesigning to make it inherently safer using elimination or substitution

Process Safety Strategy Chemical Reaction Hazard

Process Safety Strategy: CRH (Ref: FAI)

A strategy such as outlined here helps to formalize the process for easy identification of hazards and enables companies to opt for appropriate measures to mitigate the risk to an acceptable level.

Hope you enjoyed reading this post and that you can relate to understand the steps one should follow while identifying chemical reaction hazards. If you would like to share on the topic, your experience, your questions or future blog topics, you can write to me on himanshuchichra@gmail.com.

Mr. Chichra is a guest blogger with whom Fauske & Associates, LLC (FAI) has recently worked to support customers in India. Read more of his posts related to process safety at www.staub-ex.blogspot.com and subscribe to FAI's blog to never miss out on any new process safety content.

Subscribe Now

Topics: process safety, chemical, chemical hazard


Is My Dust Combustible?

A Flowchart To Help You Decide
Download Now