Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Gas and Vapor

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

UN-DOT
Classification of hazardous materials subject to shipping and storage regulations
Hydrogen
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

Adiabatic Calorimetry
Data demonstrate the consequences of process upsets, such as failed equipment or improper procedures, and guide mitigation strategies including Emergency Relief System (ERS) design
Reaction Calorimetry
Data yield heat and gas removal requirements to control the desired process chemistry
Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Cable Testing
Evaluate electrical cables to demonstrate reliability and identify defects or degradation
Equipment Qualification (EQ)
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Water Hammer
Analysis and testing to identify and prevent unwanted hydraulic pressure transients in process piping
Acoustic Vibration
Identify and eliminate potential sources of unwanted vibration in piping and structural systems
Gas & Air Intrusion
Analysis and testing to identify and prevent intrusion of gas or air in piping systems
ISO/IEC 17025:2017

Fauske & Associates fulfills the requirements of ISO/IEC 17025:2017 in the field of Testing

ISO 9001:2015
Fauske & Associates fulfills the requirements of ISO 9001:2015
Dust Hazards Analysis
Evaluate your process to identify combustible dust hazards and perform dust explosion testing
On-Site Risk Management
On-site safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up
DIERS Methodology
Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods
Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safely handle the effluent discharge from an overpressure event

FATE™ & Facility Modeling

FATE (Facility Flow, Aerosol, Thermal, and Explosion) is a flexible, fast-running code developed and maintained by Fauske and Associates under an ASME NQA-1 compliant QA program.

Mechanical, Piping, and Electrical
Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid, flow, and electric power systems
Hydrogen Safety
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Thermal Hydraulics
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Nuclear Safety
Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant
Radioactive Waste
Safety analysis to underpin decomissioning process at facilities which have produced or used radioactive nuclear materials
Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory

FERST

Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions

FATE

Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities

Blog

Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.

Resources

With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Recent Posts

Severe Accident Simulators and MAAP Implementation: Nuclear Safety

Posted by Fauske & Associates on 05.15.14

Since the events at Fukushima, there has been increased interest toPWR RCS Coolant Loop View expand current simulator capability to address severe accidents. The Modular Accident Analysis Program (MAAP), an Electric Power Research Institute (EPRI) owned and licensed computer software, was developed to simulate and study severe accidents. MAAP is an integral code simulating both containment and primary system during severe accidents. Fauske & Associates, LLC (FAI) has been under contract to improve MAAP models related to BWR primary system, lower plenum, instrument tubes, molten core concrete interaction and others in order to better follow the severe accident at Fukushima.

Simulators can be expanded to cover severe accidents by implementing the MAAP code into the existing simulator. This implementation using MAAP4 was done for Krsko in Slovenia and Ulchin in Korea. MAAP5 was implemented for Daya Bay in China and Kori in Korea.

MAAP5 PWR code can be a good thermal hydraulic engine for PC based simulator for severe accident training.

According to Chan Young Paik, PhD, Vice President of Methods Development for FAI : "The MAAP5 PWR code is the latest generation of MAAP implementing new models to calculate forced and natural circulation inside a reactor coolant system (RCS) with more detailed nodalization, point kinetic and 1-D neutronics models, features to address details of new advanced reactor designs such as AP1000 and EPR, and improved containment models."

"Improvements were also made to include a steam header model with detailed steam dump logic so that the code can calculate initial RCS and steam generator responses after a reactor scram," continues Dr. Paik.  "In addition, MAAP5 has improved models for shutdown states such as modeling nozzle dams in the RCS loops, mid-loop operation, and reactor head open with the vessel submerged under the refueling water pool."

MAAP5 code can also calculate the ANS-3-5 transients required for simulators. These transients include a manual reactor trip, simultaneous trips of feed water pumps, simultaneous closure of all MSIVs, trip of any single reactor coolant pump (RCP), loss of coolant accidents, main steam line break, maximum power ramp, and maximum design load rejection.

For more information regarding severe accident design engineering, MAAP and nuclear safety topics, please contact:  AnnMarie Fauske, afauske@fauske.com, 630-887-5213. www.fauske.com

FATE - A Unique Computer Code to Prevent Flammability and Explosion Hazards  While Reducing Toxic Release

Topics: Nuclear

cta-bg.jpg

Is My Dust Combustible?

A Flowchart To Help You Decide
DOWNLOAD NOW