Hazards Analysis, Code Compliance & Procedure Development

Services to identify process safety hazards and facilitate compliance with established standards and codes.

Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Flammable Gas & Vapor Testing

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

Chemical Reactivity Testing

Laboratory testing to quantify reactive chemical hazards, including the possibility of material incompatibility, instability, and runaway chemical reactions

DIERS Methodology

Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods

Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safety handle the effluent discharge from an overpressure event

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature


Classification of hazardous materials subject to shipping and storage regulations

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents


Model transport of airborne virus aerosols to guide safe operations and ventilation upgrades


Model transport of contamination for source term and leak path factor analysis

Fire Analysis

Model transport of heat and smoke for fire analysis

Flammable or Toxic Gas

transport of flammable or toxic gas during a process upset

OSS consulting, adiabatic & reaction calorimetry and consulting

Onsite safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up

Mechanical, Piping, and Electrical

Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid flow, electric power systems

Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Hydrogen Safety

Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen

Spent Fuel

Safety analysis for packaging, transport, and storage of spent nuclear fuel

Decommissioning, Decontamination and Remediation (DD&R)

Safety analysis to underpin decommissioning process at facilities which have produced or used radioactive nuclear materials

Laboratory Testing & Software Capabilities

Bespoke testing and modeling services to validate analysis of DD&R processes

Nuclear Overview

Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant.

Severe Accident Analysis and Risk Assessment

Expert analysis of possible risk and consequences from nuclear plant accidents

Thermal Hydraulics

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Environmental Qualification (EQ) and Equipment Survivability (ES)

Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions

Laboratory Testing & Software Capabilities

Testing and modeling services to support resolution of emergent safety issues at a power plant

Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory


Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions


Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities


Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.


With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Recent Posts

Waterhammer Training Course

Posted by The Fauske Team on 09.15.17

Thursday, October 26, 2017; 8:00 am - 4:00 pm
Friday, October 27, 2017; 7:30 am - 3:30 pm
Fauske & Associates, LLC, 16W070 83rd Street, Burr Ridge, IL

Waterhammer (also spelled water hammer) is a well-known pressure pulsation phenomenon experienced in manyFAI Waterhammer Course industries. It can be very destructive, and thus it is important to have a good understanding of the potential transients. This course will cover the fundamentals of the different types of waterhammer, the conditions that lead to highly energetic and dynamic transients, how to evaluate them, and, most importantly, how to design systems to reduce the likelihood of waterhammer.

The course will include live demonstrations, since each student should not only learn about waterhammer from a book, but also by witnessing it in real life. The demonstrations will provide the necessary understanding of the energy and dynamics of the transients.

Course Topics

What is waterhammer
What causes damage
How can waterhammer be prevented
Conditions which set up waterhammer events
Examples of significant waterhammer events
Ways to analyze potential waterhammer events
    Hand calculations for peak pressures
    Hand calculations for piping loads
    Method of characteristics
    Epstein’s analytical method
    Computer codes
Fundamental considerations while using computer codes for waterhammer analysis*

Learning Outcomes

Understanding the physics behind a waterhammer transient
Familiarity with different types of waterhammer transients
Simplified, conservative ways of analyzing waterhammer transients
Background understanding of more sophisticated methods of analyzing waterhammer
Methods of identifying vulnerabilities in a system likely to lead to a waterhammer
Methods of reducing the likelihood or completely eliminating potential waterhammer transients

*This module is intended to teach the attendee about the use of computer codes for waterhammer analysis. No specific code/program will be covered during the training, but only important aspects of waterhammer computer modeling.

Please direct course related questions to Damian Stefanczyk, P.E., Director of Thermal Hydraulic Services: stefanczyk@fauske.com www.fauske.com

For hotel information or to register, please contact: FAIUniversity@fauske.com, (630) 323-8750, info@fauske.com
Price: $1,095 CEUs: 1.6 (16 PDH)

For Course Brochure and Registration Form
Click Here

FAI Waterhammer Course Brochure


For Detailed Course Description

Click Here

FAI Waterhammer Course Description

#plant safety #nuclear safety


Topics: plant safety, waterhammer, water hammer, nuclear


Is My Dust Combustible?

A Flowchart To Help You Decide
Download Now