Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Gas and Vapor

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

Classification of hazardous materials subject to shipping and storage regulations
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

Adiabatic Calorimetry
Data demonstrate the consequences of process upsets, such as failed equipment or improper procedures, and guide mitigation strategies including Emergency Relief System (ERS) design
Reaction Calorimetry
Data yield heat and gas removal requirements to control the desired process chemistry
Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Cable Testing
Evaluate electrical cables to demonstrate reliability and identify defects or degradation
Equipment Qualification (EQ)
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Water Hammer
Analysis and testing to identify and prevent unwanted hydraulic pressure transients in process piping
Acoustic Vibration
Identify and eliminate potential sources of unwanted vibration in piping and structural systems
Gas & Air Intrusion
Analysis and testing to identify and prevent intrusion of gas or air in piping systems
ISO/IEC 17025:2017

Fauske & Associates fulfills the requirements of ISO/IEC 17025:2017 in the field of Testing

ISO 9001:2015
Fauske & Associates fulfills the requirements of ISO 9001:2015
Dust Hazards Analysis
Evaluate your process to identify combustible dust hazards and perform dust explosion testing
On-Site Risk Management
On-site safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up
DIERS Methodology
Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods
Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safely handle the effluent discharge from an overpressure event

FATE™ & Facility Modeling

FATE (Facility Flow, Aerosol, Thermal, and Explosion) is a flexible, fast-running code developed and maintained by Fauske and Associates under an ASME NQA-1 compliant QA program.

Mechanical, Piping, and Electrical
Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid, flow, and electric power systems
Hydrogen Safety
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Thermal Hydraulics
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Nuclear Safety
Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant
Radioactive Waste
Safety analysis to underpin decomissioning process at facilities which have produced or used radioactive nuclear materials
Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory


Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions


Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities


Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.


With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Published May 25, 2017

Evaluation of Max Allowed Temp for RHR Suction Piping System Aligned to ECCS




A series of calculations have been performed computer.jpgto investigate the thermal hydraulic behavior of the Residual Heat Removal (RHR) suction piping system should a Loss-of-Coolant Accident (LOCA) would occur shortly after transition from the shutdown cooling mode to the standby Emergency Core Cooling System (ECCS) injection mode. This condition can occur during startup and shutdown operations and has the potential of hot fluid being trapped in the Residual Heat Removal (RHR) hot leg suction line for the period of time required for the trapped fluid to cool down to ambient conditions.

Depending on the piping configuration, this cooldown could require in excess of 24 hours, leaving a window of time in which the RHR system could be considered vulnerable to behaviors associated with elevated fluid temperatures in this location should the system be needed in response to an accident. These behaviors include the potential for steam intrusion into the RHR pump and to create conditions conducive to condensation induced water hammer on the initiation of Refueling Water Storage Tank (RWST) injection as well as during the switchover to the sump recirculation mode. This issue has been raised in Nuclear Safety Advisory Letter (NSAL), NSAL-93-004 (Ref. [1]) and NSAL-09-8 (Ref. [2]). Therefore, the analysis was intended to address this issue for the Westinghouse three-loop Pressurized Water Reactor (PWR). A RELAP5 model of the RHR system was developed to follow this two-phase, steam-water transient behavior.

The RELAP5 results show that the largest concern for the RHR suction piping is the potential to experience steam ingestion into the RHR pump due to flashing of the trapped hot fluid in the hot leg suction line. This calculation has conservatively generated temperature limits for the isolation of the RHR shutdown cooling to ensure no steam ingestion into the pump will occur. As long as the maximum water temperature is less than 232 °F, there will be no steam intrusion. The considerations for a potential water hammer were not of concern. However, results can be changed for other plants with different geometries and conditions.



1. Westinghouse, 1993, RHRS Operation as Part of the ECCS during Plant Startup, NSAL-93-004: Nuclear Safety Advisory Letter.

2. Westinghouse, 2009, Presence of Vapor in Emergency Core Cooling System/Residual Heat Removal System in Modes 3/4 Loss-of-Coolant Accident Conditions, NSAL-09-8: Nuclear Safety Advisory Letter. 


For more information, contact,

Sign up for our newsletter to Get all the latest information

Share this article

Find more resources articles