Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Gas and Vapor

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

UN-DOT
Classification of hazardous materials subject to shipping and storage regulations
Hydrogen
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

Adiabatic Calorimetry
Data demonstrate the consequences of process upsets, such as failed equipment or improper procedures, and guide mitigation strategies including Emergency Relief System (ERS) design
Reaction Calorimetry
Data yield heat and gas removal requirements to control the desired process chemistry
Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Cable Testing
Evaluate electrical cables to demonstrate reliability and identify defects or degradation
Equipment Qualification (EQ)
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Water Hammer
Analysis and testing to identify and prevent unwanted hydraulic pressure transients in process piping
Acoustic Vibration
Identify and eliminate potential sources of unwanted vibration in piping and structural systems
Gas & Air Intrusion
Analysis and testing to identify and prevent intrusion of gas or air in piping systems
ISO/IEC 17025:2017

Fauske & Associates fulfills the requirements of ISO/IEC 17025:2017 in the field of Testing

ISO 9001:2015
Fauske & Associates fulfills the requirements of ISO 9001:2015
Dust Hazards Analysis
Evaluate your process to identify combustible dust hazards and perform dust explosion testing
On-Site Risk Management
On-site safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up
DIERS Methodology
Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods
Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safely handle the effluent discharge from an overpressure event

FATE™ & Facility Modeling

FATE (Facility Flow, Aerosol, Thermal, and Explosion) is a flexible, fast-running code developed and maintained by Fauske and Associates under an ASME NQA-1 compliant QA program.

Mechanical, Piping, and Electrical
Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid, flow, and electric power systems
Hydrogen Safety
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Thermal Hydraulics
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Nuclear Safety
Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant
Radioactive Waste
Safety analysis to underpin decomissioning process at facilities which have produced or used radioactive nuclear materials
Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory

FERST

Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions

FATE

Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities

Blog

Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.

Resources

With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Recent Posts

Meeting ABET Requirements: ARSST™ is Key to Chemical Process Safety

Posted by Fauske & Associates on 11.20.13

ARSSTequipmentFirstDraft

Part 2 in series

In Part 1 of this 3 Part series, we emphasized 20 key steps to hazard identification as the core of any safety program providing steps for identification as well as evaluation and testing methods per the blog post: "Reactive Hazard Identification Key To Chemical Engineering Process Safety" on November 14, 2013.

According to ABET (The Accreditation Board for Engineering and Technology lead by the American Institute of Chemical Engineers), the "Program Criteria for Chemical, Biochemical, Biomolecular, and Similarly Named Engineering Programs" curriculum must: 

"...provide a thorough grounding in the basic sciences including chemistry, physics, and/or biology, with some content at an advanced level, as appropriate to the objectives of the program. The curriculum must include the engineering application of these basic sciences to the design, analysis, and control of chemical, physical, and/or biological processes, including the hazards associated with these processes."  

Fauske & Associates, LLC (FAI) has long been a leader in identifying the hazards of reactive chemicals.  This leadership started when FAI was selected as the principal research contractor for the Design Institute for Emergency Relief Systems (DIERS), an extensive R&D program sponsored by 29 companies under the auspices of AIChE and completed in 1985. Company founder, Dr. Hans K. Fauske, served as the principal investigator and overall leader of the DIERS research project. A primary purpose of that effort was evaluation of emergency relief vent requirements, including energy and gas release rates for systems under upset conditions and the effect of two-phase flow on the emergency discharge process.

The DIERS program resulted in the development of a bench scale low thermal inertia adiabatic calorimeter, which was commercialized by FAI as the Vent Sizing Package (VSP™). Later improvements led to the VSP2™. More recently, the Reactive System Screening Tool (RSST™) was introduced by FAI in 1989 to provide an easy to use and inexpensive approach to the DIERS testing method. Subsequent enhancements led to the Advanced RSST (ARSST™) in 1999. The accuracy and ease of test cell data make the ARSST an industry leader.

Safe process design requires knowledge of chemical reaction rates, flow regime (gassy, vapor, hybrid, etc.) and energy release rates, all of which can be obtained through adiabatic calorimetry testing. Such testing provides data for relief system design, safe scale-up of chemical processes and changes to process recipes.

LOW PHI-FACTOR ADIABATIC CALORIMETERS

FAI uses the DIERS-based VSP2™ and ARSST™ calorimeters to characterize chemical systems and design emergency pressure relief systems. 

The Vent Sizing Package 2™ (VSP2™) is a low thermal inertia adiabatic calorimeter used for process hazard characterization that utilizes state-of-the-art DIERS technology to obtain critical upset process design data.

The ARSST™ is a low thermal inertia calorimeter used to obtain critical upset process design data. FAI offers the ARSST™ along with options for customization such as a high-pressure vessel and flow regime detector, as well as commonly used items including test cells, heaters, glands and thermocouples.

A variety of process upset conditions can be tested to satisfy hazards identified by a PHA (Process Hazards Analysis) or HAZOP study. The low phi-factor (or thermal inertia) allows the heat and gas generation rates to be measured and directly applied to the process scale, which leads to appropriately designed emergency relief systems.

FLOW REGIME DETECTOR (FRED™)

Knowledge of the prevailing flow regime during emergency venting of a runaway chemical reaction is essential in order to estimate a realistic but safe relief system design. FAI offers a Flow Regime Detector (FRED™) for use in conjunction with the ARSST™ calorimeter to distinguish between foamy and non-foamy runaway reactions.

PRACTICAL EMERGENCY VENT SIZING SOFTWARE (PrEVent™) 

FAI’s PrEVent™ software allows users to implement practical emergency vent sizing designs utilizing industry recognized methodology, including the Leung Omega, Fauske Gas/Vapor and Fauske General Screening methods. The software applies DIERS methodology for reactive chemistry and API 521/2000 or NFPA 30 for non-reactive systems. The program and interface are designed to be used in conjunction with data provided by the VSP2™ or ARSST™ and is a great companion to any low phi-factor adiabatic calorimeter.

ARSST DiagramWHY THE ARSST™ IS KEY

Based on DIERS two-phase flow methodology, which is recognized by OSHA as “an example of good engineering practice”, the ARSST™ device is also capable of generating low phi-factor data for DIERS vent sizing.

The ARSST™ enables users to quickly obtain reliable adiabatic data which can be used for a variety of safety applications, including characterization of thermal stability and reaction chemistry. Test data includes adiabatic rates of temperature and pressure change which, due to the low thermal inertia, can be directly applied to process scale to determine relief vent sizes, quench tank designs and other relief system design parameters related to process safety management (PSM).

ARSST™ tests are used to model such upset scenarios as loss of cooling, loss of stirring, mischarge of reagents, mass-loaded upset, batch contamination and fire exposure heating. Data derived from ARSST™ testing yields critical experimental knowledge of the rates of temperature and pressure rise during a runaway reaction, thereby providing reliable energy and gas release rates which can be applied directly to full scale process conditions.

This easy to use and cost-effective calorimeter can quickly and safely identify potential reactive chemical hazards in the process industry. FAI manufactures and sells the ARSST™ along with options for customization such as a high-pressure vessel and Flow Regime Detector (FRED™). FAI also stocks commonly used items such as test cells, heaters, glands and thermocouples.

Part 3 in the series will conclude with: "Exploring the ARSST™ As A Tool For Educational & Industrial Applications".  For more information on the ARSST, chemical process safety and engineering, please contact;  Jeff Griffin, griffin@fauske.com, 630-887-5278

ADVANCED REACTIVE SYSTEM SCREENING TOOL (ARSST)

Topics: Process Safety, Process Hazards Analysis, ARSST, VSP2, Reactive Chemicals

cta-bg.jpg

Is My Dust Combustible?

A Flowchart To Help You Decide
Download Now