Combustible Dust Testing

Laboratory testing to quantify dust explosion and reactivity hazards

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Gas and Vapor

Laboratory testing to quantify explosion hazards for vapor and gas mixtures

Classification of hazardous materials subject to shipping and storage regulations
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Thermal Stability

Safe storage or processing requires an understanding of the possible hazards associated with sensitivity to variations in temperature

Adiabatic Calorimetry
Data demonstrate the consequences of process upsets, such as failed equipment or improper procedures, and guide mitigation strategies including Emergency Relief System (ERS) design
Reaction Calorimetry
Data yield heat and gas removal requirements to control the desired process chemistry
Battery Safety

Testing to support safe design of batteries and electrical power backup facilities particularly to satisfy UL9540a ed.4

Safety Data Sheets

Develop critical safety data for inclusion in SDS documents

Cable Testing
Evaluate electrical cables to demonstrate reliability and identify defects or degradation
Equipment Qualification (EQ)
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Water Hammer
Analysis and testing to identify and prevent unwanted hydraulic pressure transients in process piping
Acoustic Vibration
Identify and eliminate potential sources of unwanted vibration in piping and structural systems
Gas & Air Intrusion
Analysis and testing to identify and prevent intrusion of gas or air in piping systems
ISO/IEC 17025:2017

Fauske & Associates fulfills the requirements of ISO/IEC 17025:2017 in the field of Testing

ISO 9001:2015
Fauske & Associates fulfills the requirements of ISO 9001:2015
Dust Hazards Analysis
Evaluate your process to identify combustible dust hazards and perform dust explosion testing
On-Site Risk Management
On-site safety studies can help identify explosibility and chemical reaction hazards so that appropriate testing, simulations, or calculations are identified to support safe scale up
DIERS Methodology
Design emergency pressure relief systems to mitigate the consequences of unwanted chemical reactivity and account for two-phase flow using the right tools and methods
Deflagrations (Dust/Vapor/Gas)

Properly size pressure relief vents to protect your processes from dust, vapor, and gas explosions

Effluent Handling

Pressure relief sizing is just the first step and it is critical to safely handle the effluent discharge from an overpressure event

FATE™ & Facility Modeling

FATE (Facility Flow, Aerosol, Thermal, and Explosion) is a flexible, fast-running code developed and maintained by Fauske and Associates under an ASME NQA-1 compliant QA program.

Mechanical, Piping, and Electrical
Engineering and testing to support safe plant operations and develop solutions to problems in heat transfer, fluid, flow, and electric power systems
Hydrogen Safety
Testing and consulting on the explosion risks associated with devices and processes which use or produce hydrogen
Thermal Hydraulics
Testing and analysis to ensure that critical equipment will operate under adverse environmental conditions
Nuclear Safety
Our Nuclear Services Group is recognized for comprehensive evaluations to help commercial nuclear power plants operate efficiently and stay compliant
Radioactive Waste
Safety analysis to underpin decomissioning process at facilities which have produced or used radioactive nuclear materials
Adiabatic Safety Calorimeters (ARSST and VSP2)

Low thermal inertial adiabatic calorimeters specially designed to provide directly scalable data that are critical to safe process design

Other Lab Equipment and Parts for the DSC/ARC/ARSST/VSP2 Calorimeters

Products and equipment for the process safety or process development laboratory


Software for emergency relief system design to ensure safe processing of reactive chemicals, including consideration of two-phase flow and runaway chemical reactions


Facility modeling software mechanistically tracks transport of heat, gasses, vapors, and aerosols for safety analysis of multi-room facilities


Our highly experienced team keeps you up-to-date on the latest process safety developments.

Process Safety Newsletter

Stay informed with our quarterly Process Safety Newsletters sharing topical articles and practical advice.


With over 40 years of industry expertise, we have a wealth of process safety knowledge to share.

Published August 23, 2017

Fauske & Henry: On Vapor/Steam Explosion Analysis

As seen in the August 2017 issue of Nuclear News, Copyright © 2017 by the American Nuclear Society

Recently, Director of American Nuclear Society's (ANS) Department of Scientific Publications and Standards Rick Fauske & Henry Interview Nuclear NewsMichal sat down with Drs. Hans Fauske and Robert Henry, authors of "Experimental Technical Bases for Evaluating Vapor/Steam Explosions in Nuclear Reactor Safety", a new book published by the ANS. His interview can be seen in the August 2017 issue of Nuclear News

Vapor/steam explosions are important considerations for a nuclear safety assessment and to prevent severe accidents where a high temperature molten mass could contact a liquid coolant. It is essential that these potential accident conditions are evaluated in a manner consistent with the available experimental technical bases. This book provides a common reference for the extensive experimental data base that has been accumulated due to the substantial works of industrial, national, and university laboratories throughout the world, to help all studies include the total experimental data base as well as that which directly relates to the molten materials and coolant of interest. In addition, it provides a common reference so that such evaluations can either reference this book, or consult the references given within to find the sources where further details can be obtained when needed. Lastly, the measured energy releases for key experiments are compared with straightforward bounding calculations that can be used to facilitate discussions between reactor designers, utilities, and regulatory agencies.

Drs Fauske and Henry would like to recognize the efforts of the American Nuclear Society Book Review Committee and its members for their comments and advice. The book can be purchased at ANS here: or Amazon.

The entire 5 page interview is here.  For more information, contact AnnMarie Fauske at 630-887 5213


Sign up for our newsletter to Get all the latest information

Share this article

Find more resources articles